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and additional noise sources in the real configuration, in parti-
cular, „blade-wake“ interaction noise for the pushing configu-
ration of the propeller [16, 17].

Currently, piston engines are used as the drive of the LPDA 
and UAV propellers, while providing low specific fuel con-
sumption and a long flight time. In contrast to electric piston 
engines, during operation, they generate significant noise, 
the role of which in the overall community noise created by 
the aircraft depends on a different parameters [18, 19], both 
constructive and the direction of noise propagation and the 
power condition of the power plant (PP).

The developers of LPDA and UAVs not designing PP, their 
task is to select an optimal power plant, and its coordination 
with the aircraft, taking into account the acoustic characteris-
tics of the piston engine and propeller, as well as taking into 
account the aeroacoustics effects in real configurations PP on 
a/c.

The purpose of the work is to consider the problem of se-
lecting PP for LPDA and UAVs taking into account the requi-
rements for community noise, as well as to analyze the main 
parameters of power plants that affect the noise level of the 
aircraft as a whole. At the same time, the issues of aerodynamic 
design of light propeller-driven aircraft are discussed in detail 
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1. INTRODUCTION

Currently, more and more attention is paid to the environmen-
tal performance of aviation engineering. Community noise 
levels generated by light propeller-driven aircraft (LPDA) are 
normalized in accordance with the ICAO standard. The maxi-
mum permissible noise levels of propeller-driven unmanned 
aerial vehicles (UAVs) of the aircraft type are currently not re-
gulated, and the low noise of the vehicles is their competitive 
advantage [1–5]. However, in the future, it is possible to intro-
duce international standards by analogy with the ICAO stan-
dards for light propeller-driven aircraft. In this regard, the task 
of designing LPDAs and UAVS taking into account the require-
ments for community noise is relevant.

One of the ways to solve the environmental problems of 
LPDA and UAVS is to switch from piston and turboprop engi-
nes to electric engines. Within the framework of the concept 
for the development of aircraft engine building [6, 7], it is 
planned that for regional aircraft with a capacity of up to 50 
people, the necessary equipment (electric motors and batte-
ries of acceptable weight) it will be available within the next 
10 years. The hybrid scheme which involves the generation of 
electricity on board by means of a piston or turboprop engine, 
allows you to circumvent this restriction and is the most pro-
mising for LPDAs and UAVS within 5-7 years.

When using electric power plants the main sources of com-
munity noise will be propeller [8–12], airframe noise [13–15], 
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Fig. 1: Schematic diagram of the selecting of power plant for light 
propeller-driven aircraft and UAVS taking into account the requi-
rements for community noise

Mass and size restrictions for a piston engine are associated 
with the need to install mufflers in the intake and exhaust cha-
nnels, as well as hoods. Under the influence of the engine st-
roke in the framework of the proposed scheme, the influence 
of the stroke on the engine power on the one hand and on 
the acoustic efficiency on the other hand is meant. With the 
same available power, a two-stroke engine will be significantly 
smaller and lighter than a four-stroke engine, but significant-
ly noisier in the absence of mufflers and hoods due to higher 
acoustic efficiency.

The main parameters that affect the propeller noise are cir-
cumferential speed, number of blades, diameter, configura-
tion (tractor or pushing), as well as the presence of duct (or 
shroud).

When selecting the propeller to the engine, the required 
diameter is first determined. Approximately, the propeller dia-
meter can be determined by the statistical formula [23]:

          (1)

where 
Ne  –available engine power (HP), 
nm  – propeller speed (rpm), 
Δ – relative density of air, equal to the ratio of air density at 

a given height to air density at ground level, 
kd – empirical coefficient is selected depending on the type 

of propeller (see Tab. 2).
V  – cruise flight speed (km/h)

Tab. 2: The values of the kd coefficient according to the data of 
the work [23]

in [20–23] and are not considered in the framework of this pa-
per. The optimal aerodynamic design of propellers is discussed 
in Ref. [24–31], and the process of aeroacoustics optimization 
of the blade profiles is discussed in detail in Ref. [32].

2. COMPETITIVE COMMUNITY NOISE LEVELS 
OF LIGHT PROPELLER-DRIVEN AIRCRAFT

When forming requirements for developed and prospecti-
ve aircraft, it is also necessary to formulate requirements for 
maximum permissible community noise levels on the basis of 
known data on the noise levels of operated aircraft that have 
previously received a type certificate. For this purpose, the 
EASA certification test database was analyzed. The results of 
the analysis of inventory values by community noise levels of 
operated light propeller-driven aircraft certified in accordance 
with paragraphs 6.3, 10.4a and 10.4b of ICAO standard are pre-
sented in Table 1 [33].

It can be seen that some aircraft were certified with almost 
zero margin, the maximum margin reaches 20 dBA, and the 
average margin for all aircraft considered in the EASA databa-
se is 6 dBA for modern aircraft certified according to the re-
quirements of p 10.4b. Therefore, the maximum permissible 
community noise level of the designed aircraft should be set 
at least 6 dBA lower than the value of paragraph 10.4b of the 
ICAO standard (Tab. 1).

Tab. 1: Minimum, maximum and average noise levels of light pro-
peller-driven aircrafts certified in accordance with Chapters 6 and 
10 of ICAO standard

3. THE METHOD OF SELECTING THE POWER 
PLANT TAKING INTO ACCOUNT THE NOISE 
RESTRICTIONS

One of the important tasks in the design of light  
propeller-driven aircraft and unmanned aerial vehicle is se-
lecting of the power plant. First, the engine (one or two) of the 
required power is selected and propeller is selected to it, so 
that the power plant provides the specified flight performance 
of a/c. In general, the best engine is the one where the sum of 
the mass of the geared engine and the fuel required to provide 
a given flight time is minimal.

The schematic diagram of the selecting of power plant for 
LPDA and UAVS taking into account the requirements for co-
mmunity noise is considered on Fig. 1.
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It can be seen that some aircraft were certified with almost zero margin, the maximum margin
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Requirements of ICAO standard Chapters p 6.3 p 10.4a p 10.4b

Minimum margin, dBA 0.1 0.1 0.1
Maximum margin, dBA 18.6 20 17.4
Average margin, dBA 4.6 7.5 6

Tab. 1: Minimum, maximum and average noise levels of light propeller-driven aircrafts certified in

accordance with Chapters 6 and 10 of ICAO standard
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When selecting the propeller to the engine, the required diameter is first determined. Approximately, 
the propeller diameter can be determined by the statistical formula [23]: 

𝒅𝒅 = 𝒌𝒌𝒅𝒅√
𝑵𝑵𝒆𝒆

𝑽𝑽𝑽𝑽𝒏𝒏𝒎𝒎𝟐𝟐
𝟒𝟒  ,        (1) 

where Ne –available engine power (HP), nm – propeller speed (rpm), Δ – relative density of air, equal 
to the ratio of air density at a given height to air density at ground level, kd– empirical coefficient is 
selected depending on the type of propeller (see Table 2). 
 

Type of propeller 

Material 
Tree Metal 

Number of blades 
2 4 2 3 

High-speed 98 82 96 89 
Rate of climb 110 92 108 103 

Economy 104 89 103 99 
Tab. 2: The values of the kd coefficient according to the data of the work [23] 
 
When selecting the propeller diameter also need to consider design constraints: 
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a significant reduction in noise levels in the aircraft configura-
tion. The most effective way to ensure the design of a low-noi-
se propeller is to optimize it in terms of changing the number 
of blades and diameter.

According to semiempirical model of propeller noise  
[37, 38], the components of the propeller noise from aerody-
namic loads and thickness can be calculated using expressions 
(2) and (3) sound power sources.

For load noise:

           (2)

For thickness noise:

(3)

where 
Mcir  – Mach number of the circumferential speed (tip Mach 

number), 
Mflight  – flight Mach number, 
α  – thrust coefficient, 
β  – Power coefficient, 
c1, c2 – empirical coefficients, 
d  – propeller diameter (m), 
a  – maximum thickness of the aerodynamic profile of the 

blade at the effective radius (m), 
 – relative thickness of blade profile,
  – coefficient of the unfolded area of blade,
  – relative radius of propeller, 

c0  – sound speed (m/s), 
z  – number of blades, 
beff  – blade chord in the effective cross-section (m), 
ρ  – air density (kg/m3), 
n  – propeller speed (rps).

In take-off power condition the noise from the aerodynamic 
load dominates so when designing light propeller-driven air-
craft that are certified for community noise in take-off mode, 
it is very important to take into account this component of the 
tonal propeller noise. Analyzing the expression (2) it can be 
seen that the sound power of the load noise depends on the 
thrust in the degree of 2 and on the tip Mach number in the 
degree of 8.

Based on the analysis of semiempirical model of propeller 
noise [34, 35], the authors proposed a simple correlations that 
allow to evaluate the influence of diameter and number of 
blades on load noise when the condition of a constant thrust 
propellers consider, and when you save the aerodynamic simi-
larity and constant tip Mach number [39].

The calculated change in the sound power level noise from 
load is written as:

          (4)

In Ref. [40], the results of assessing the influence of the num-
ber of blades on the propeller noise based on numerical mo-
deling as a function of the tip Mach number were presented. 
The calculation is performed for the far field in the direction 

When selecting the propeller diameter also need to consider 
design constraints:
•	 strength condition [24] (nd<90 m/s, where n is propeller 

speed (rps)),
•	 tip Mach number should not exceed 0.9,
•	 distance from the blade tip to the ground not less than 

250 mm [23],
•	 distance from the propeller tip to any part of the aircraft 

lying in the plane of rotation of the propeller is not less 
than 200 mm.

Modern propellers are made of composite materials, so 
there are no mass restrictions associated with the number of 
blades. The number of blades affects the propeller noise and 
its efficiency. For small-sized propellers operating at low Rey-
nolds numbers the use of a larger number of blades in the de-
sign significantly reduces the efficiency.

To improve the aerodynamic characteristics of the propeller 
and, as a result, the a/c flight performance, in some cases, it is 
advisable to enclose the propeller in duct (or shroud).

Also note that the circumferential speed of the ducted pro-
peller is less than in the case of an isolated propeller, with the 
same thrust, which can lead to a significant reduction pro-
peller noise. The duct can significantly effect on directivity pa-
ttern of the propeller.

Under the influence of the configuration on the propeller 
noise in the framework of the scheme presented on Fig. 1, 
two effects are understood. Firstly, it is the work of the pro-
peller in the wake of the upstream parts of the airframe, and 
secondly, the location of the power plant above the wing is 
possible, which can provide a significant noise reduction due 
to the scattering of the power plant noise on the elements of 
the airframe.

Note also that the placement of the power plant in the wake 
of the fuselage can provide positive interference, which can 
lead to a decrease in the required engine power for the flight. 
When the propeller is located in a pushing configuration an in-
crease in tonal noise should be expected compared to the case 
of an isolated propeller due to the appearance of an additional 
noise source so called the „blade-wake“ interaction noise.

4. EVALUATION OF THE INFLUENCE OF THE 
NUMBER OF BLADES AND DIAMETER ON 
PROPELLER NOISE

Until now, the authors have limited the possibilities of redu-
cing the propeller noise by changing the geometry of the 
blade profile (i.e., aeroacoustics optimization) to 3 dB [34].  
In Ref. [35] aeroacoustics optimization of the blade profile of 
a 6-bladed propeller in the framework of a numerical experi-
ment led to a reduction in overall noise level of the propeller 
by 5 dB. Thus by changing the sweep of the blade to achieve 
noise reduction 2 dBA [36], but due to changes in the tip shape 
of the blade, you can reduce the noise level by 1-2 dB.

Aeroacoustics optimization of the blade profile is a  
time-consuming process and does not guarantee, ultimately, 
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𝟐𝟐𝟐𝟐𝒂𝒂𝑴𝑴𝒄𝒄𝒄𝒄𝒓𝒓𝒛𝒛−𝟏𝟏
) 𝟏𝟏
𝒃𝒃𝒆𝒆𝒇𝒇𝒇𝒇
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The calculated change in the sound power level noise from load is written as: 

𝜟𝜟𝑳𝑳𝑾𝑾 = 𝟐𝟐𝟎𝟎𝒇𝒇𝒇𝒇 𝒅𝒅𝟏𝟏
𝒅𝒅𝟐𝟐
+ 𝟓𝟓𝟎𝟎𝒇𝒇𝒇𝒇 𝒛𝒛𝟏𝟏
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In Ref. [40], the results of assessing the influence of the number of blades on the propeller noise based 
on numerical modeling as a function of the tip Mach number were presented. The calculation is 
performed for the far field in the direction of the expected maximum radiation in the plane of rotation 
of the propellers. It can be seen that at the tip Mach number of 0.75, the noise level of the 7-bladed 
propeller is 12 dB lower than for the 3-bladed propeller. At a Mach number of 0.9, the effect is reduced 
to 4 dB, which is associated with an increase in the contribution of the thickness noise component. 
 
 
Fig. 2: The influence of the number of blades and tip Mach number on the propeller noise according to 
the results of a numerical study in the direction of 90° in the far field [40] 
 
Note that in practice, when acoustic finishing of aircraft in operation, the number of blades increases, 
as a rule, by one with an insignificant change in diameter. To estimate the influence of the number of 
blades and the diameter in this case it is convenient to use the expression (4). 
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6. EFFECT OF THE PUSHING CONFIGURATION 
ON THE PROPELLER NOISE

When the propeller is positioned in the pushing configu-
ration an additional noise source due to the aerodynamic 
interaction „blade-wake“. Graph of the dependence of the re-
duction in the overall noise level of the propeller (ΔL) when 
it moves downstream by a normalized distance x/c (the ratio 
of the distance x to the average aerodynamic chord of the  
wing c (pylon or empennage)) are shown in Fig. 3.

Fig. 3: Graph of the attenuation of the propeller noise with inc-
rease spacing between the propeller and wing

It can be seen that to offset the effect of the pushing confi-
guration the propeller should be positioned downstream at a 
distance of more than one average aerodynamic chord above 
the located wing (pylon or empennage).

Another way to reduce the propeller noise is pylon blowing 
In order to compensate for the deficit of speed in the wake. 
When the flow velocity profile is fully aligned in the wake of 
the pylon, it is possible to ensure that the noise levels of the 
pusher propeller are at the level of the isolated propeller.

7. CONCLUSION

The problem of selecting a power plant for light  
propeller-driven aircraft and unmanned aerial vehicle taking 
into account the requirements for community noise is con-
sidered. The competitively necessary noise levels are formu-
lated which should be used in the design of light propeller-
-driven aircraft. The influence of different design parameters 
on the propeller noise is considered. In particular, it is shown 
that when placing the propeller in the pushing configurati-
on, it is necessary to take into account an additional source 
of noise, called the „blade-wake“ interaction noise. When the 
propeller is located downstream for a distance of more than 
one average aerodynamic chord of the wing (pylon or em-
pennage), the noise levels of the pushing propeller become 
comparable to the noise levels of the isolated propellers. The 
average efficiency of modern piston engine exhaust silencers 
is 4.6 dBA as part of the power plant.

of the expected maximum radiation in the plane of rotation 
of the propellers. It can be seen that at the tip Mach number 
of 0.75, the noise level of the 7-bladed propeller is 12 dB lower 
than for the 3-bladed propeller. At a Mach number of 0.9, the 
effect is reduced to 4 dB, which is associated with an increase 
in the contribution of the thickness noise component.

Fig. 2: The influence of the number of blades and tip Mach num-
ber on the propeller noise according to the results of a numerical 
study in the direction of 90° in the far field [40]

Note that in practice, when acoustic finishing of aircraft in 
operation, the number of blades increases, as a rule, by one 
with an insignificant change in diameter. To estimate the influ-
ence of the number of blades and the diameter in this case it is 
convenient to use the expression (4).

5. EVALUATION OF THE INFLUENCE OF EX-
HAUST MUFFLERS AND HOODS

Based on the analysis of the EASA database of acoustic cer-
tification tests of LPDA presented in Ref. [33] the following 
conclusions are made about the effect of exhaust mufflers on 
the community noise levels of LPDA.
– When installing mufflers in the engine exhaust system the 

community noise levels of LPDA are reduced by an amount 
from 1.7 to 10.3 dBA and on average by 4.6 dBA.

– If there are mufflers in the exhaust path sometimes new 
more efficient mufflers are installed to reduce the noise of 
the aircraft during operation. Their efficiency is higher than 
reference ones by 2.5–5.2 dBA, and on average by 3.7 dBA 
as part of LPDA power plant.

In the absence of exhaust mufflers in the exhaust path, the 
use of hoods is not advisable from the point of view of noise 
reduction.

Thus it can be stated that the average efficiency of stan-
dard exhaust mufflers in the power plant is 4.6 dBA. The ma-
ximum efficiency muffler will reduce the noise levels of PP by  
10.3 dBA. When choosing a piston engine, it is necessary to 
choose the engine with the lowest available power, however, 
fully providing the required level of a/c flight performances.
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