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Abstract: This paper presents a case study focusing on the vibrations of a ribbon loudspeak-
er’s strip. These vibrations induce surface deformation, resulting in a degradation of the repro-
duced sound quality. The phenomenon is briefly reviewed, and the theoretical foundations are 
outlined. Several modes of the loudspeaker’s strip are analyzed using 3D and 2D simulations 
conducted in Matlab® and COMSOL Multiphysics. A video recording has been done that visu-
ally demonstrates the specific modes that were theoretically calculated. Conclusions drawn 
from the mode analysis are applicable to the design and manufacturing of loudspeakers.
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1.	 INTRODUCTION

Unlike loudspeakers with a circular piston 
[1-4], those with a rectangular strip are more 
prone to breaking when its surface is de-
formed under the influence of its eigenfre-
quencies.

This paper focuses on the mechanical vibra-
tions of a rectangular strip of the loudspeak-
er. These vibrations result in deformations, or 
modes, on the strip’s surface, impacting the 
quality of reproduced sound and potentially 
posing a risk of its destruction. 

Understanding the critical points (certain 
modes) that may compromise the structur-
al integrity of loudspeakers with rectangular 
strip is essential. This knowledge enables the 
implementation of quality control measures 
(active filters) or other protective strategies 
to maintain the performance and durability of 
these loudspeakers.

A brief review and the comprehensive theo-
retical basis for this phenomenon have been 
presented at the beginning of the paper. Fur-
ther, several modes of the strip of a specific 
loudspeaker have been simulated, analyzed 
and visualized in 2D and 3D using Matlab® and 

COMSOL Multiphysics software programs. To 
do so, the Finite Elements Method (FEM) has 
been used, similar to [5].

Finally, an experiment has been conducted 
– video recording (at 60 fps) of some of the 
strip’s modes.

2.	 THEORETICAL BACKGROUND

2. 1.	 The Basic Plate Theory

The acoustic mass and impedance of the rib-
bon loudspeaker depend on the reproduced 
frequency [6]. This results in resonances at 
different frequencies for a given ribbon loud-
speaker. Those resonant frequencies are in 
relation to the strip’s thickness.

Theoretically, the behavior of the ribbon loud-
speaker’s strip may be compared to that of 
a very thin (a few microns) plate. A plate is 
a solid body bounded by two parallel flat sur-
faces, having two dimensions far greater than 
the third [7, 8]. When the ratio of the plate 
thickness to its smaller lateral dimension (in 
this case, the width) is less than 1/20, the plate 
is usually considered to be thin [9].
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There are two main mathematical methods for 
plate modes examination. The first method, as 
proposed by Poisson, involves the development 
of a series of functions representing stress and 
strain along the Z coordinate (Fig. 1), a concept 
originally established by Cauchy. The second 
is based on Kirchhoff’s General Theory of thin 
rods or wires represented by Love, generalized 
for different plate thickness by Midlin (and now 
known as Midlin Plate Theory).

These two approaches consider deformations 
of the plates whose edges are either clamped 
or simply supported, while more sophisticat-
ed methods like the Rayleigh-Ritz method, 
Finite Strip method, Two-new eigenfunction 
theory, to name a few, examine plates with 
all possible combinations of clamped, simply 
supported, and free edge conditions [10, 11].

There are also other approaches for analyz-
ing thin plate vibrations, like the Bessel func-
tion method, where various Bessel functions 
represent the different mechanical vibrations 
(modes) with different boundary conditions 
[12]. The first of the strip’s modes has the 
highest amplitude, while the actual defor-
mations of the other modes are significantly 
smaller [9].

Therefore, the deformation of the strip in the 
first eigenfrequency (first mode) will be of 
most significant research interest in terms 
of both – the mechanical bending of the strip 
and the degree of deterioration of the repro-
duced sound.

In the current paper, the Rayleigh Method has 
been used to determine the first eigenfre-
quency of the ribbon loudspeaker. The ob-
tained result has been compared to results 
from simulations conducted by software 
products using the Basic Plates Theory for 
calculating the resonant frequencies. It also 
has been compared to the 60-fps video re-
cording of the plate mechanical vibrations.

In Basic Plates Theory, some intensities 
and moments pertain to a unit length of the 
cross-section [13, 14]. Those are:

– shear forces – Qx and Qy;

– bending moments – Mx and Qy ;

– twisting moments – Mxy = Myx.

In Fig. 1, the latter are shown, including tan-
gential stresses (σx , σxy , σxz , σy , σyx and σyz ) on 
the surface of the plate.

The numerical values of the intensities and 
moments on the plate surface are [13, 14]:

						      (1)

where h is the plate thickness.

Fig. 1: Shear forces, bending and twisting mo-
ments and tangential stresses

Due to the plane-strained state of the plate, 
the tangential stresses σz , σzx and σzy , will 
be considerably smaller than σx , σy , and σxy ,  
therefore they are neglected. The tangential 
stresses are known from Hook’s law for the 
two-dimensional strained state [14]:
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where υ is Poisson’s ratio, characterizing the 
elastic properties of the material;

 E – Young’s modulus.

In Eq. (2) εx , εy and εxy are the correlations be-
tween the movements and the deformations. 
Those strain-displacement relations that re-
sult in the elastic body being strained due to 
the applied load are well known from Cau-
chy’s work:

							     
	  (3)

where u and v represent the horizontal move-
ments, subsequently on the X and Y axis, of 
that point on the plate’s surface.

After applying Eq. (3) in Eq. (2) and then Eq. 
(2) in Eq. (1) and afterward integrating to the 
plate’s thickness (on Z) one obtains:

						       (4)

where w(x,y) is a displacement function;

 			   – plate stiffness (flexural 

rigidity of the plate material).

The internal forces and moments can be re-
lated when considering equilibrium of the 
plate elements. Thus, for equilibrium in the X 
direction, in the absence of body forces [7]:

							     
(5)

After multiplying Eq. (5) by z and integrating 
over the thickness of the plate one can as-
sume that:

𝑸𝑸𝒙𝒙 = # 𝝈𝝈𝒙𝒙𝒙𝒙𝒅𝒅𝒅𝒅
𝒉𝒉
𝟐𝟐

%𝒉𝒉𝟐𝟐

, 𝑸𝑸𝒚𝒚 = # 𝝈𝝈𝒚𝒚𝒚𝒚𝒅𝒅𝒅𝒅;
𝒉𝒉
𝟐𝟐

%𝒉𝒉𝟐𝟐

 

 
 
 

𝑴𝑴𝒙𝒙 = # 𝒛𝒛𝝈𝝈𝒚𝒚𝒅𝒅𝒅𝒅
𝒉𝒉
𝟐𝟐

%𝒉𝒉𝟐𝟐

,𝑴𝑴𝒚𝒚 = # 𝒛𝒛𝝈𝝈𝒙𝒙𝒅𝒅𝒅𝒅;
𝒉𝒉
𝟐𝟐

%𝒉𝒉𝟐𝟐

 

 
 
 
 

𝑴𝑴𝒙𝒙𝒙𝒙 = 𝑴𝑴𝒚𝒚𝒚𝒚 = # 𝒛𝒛𝝈𝝈𝒙𝒙𝒙𝒙𝒅𝒅𝒅𝒅,
𝒉𝒉
𝟐𝟐

%𝒉𝒉𝟐𝟐

 

 
 
 
 
 

𝝈𝝈𝒙𝒙 =
𝑬𝑬

𝟏𝟏 − 𝝊𝝊𝟐𝟐
.𝜺𝜺𝒙𝒙 + 𝝊𝝊𝜺𝜺𝒚𝒚1;	

 
 
 
 

𝝈𝝈𝒚𝒚 =
𝑬𝑬

𝟏𝟏 − 𝝊𝝊𝟐𝟐
.𝜺𝜺𝒚𝒚 + 𝝊𝝊𝜺𝜺𝒙𝒙1; 

 
 
 

𝝈𝝈𝒙𝒙𝒙𝒙 =
𝑬𝑬

𝟐𝟐(𝟏𝟏 + 𝝊𝝊)
𝜺𝜺𝒙𝒙𝒙𝒙 

 
 
 
 

𝜺𝜺𝒙𝒙 =
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅 ; 

𝜺𝜺𝒚𝒚 =
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅 ; 

𝜺𝜺𝒙𝒙𝒙𝒙 =
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅, 

 
 
 
 
 

𝑴𝑴𝒙𝒙 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐1 ; 

𝑴𝑴𝒚𝒚 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐1 ; 

𝑴𝑴𝒙𝒙𝒙𝒙 = −𝑫𝑫(𝟏𝟏 − 𝝊𝝊)
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 = 𝟎𝟎. 

 
 
 
 
 

𝑸𝑸𝒙𝒙 =
𝒅𝒅𝑴𝑴𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝑸𝑸𝒚𝒚 =
𝒅𝒅𝑴𝑴𝒚𝒚

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒚𝒚𝒚𝒚
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒛𝒛𝒛𝒛
𝒅𝒅𝒅𝒅 = 𝟎𝟎, 

 
 
 
 

𝒅𝒅𝑸𝑸𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑸𝑸𝒚𝒚

𝒅𝒅𝒅𝒅 + 𝒒𝒒(𝒙𝒙, 𝒚𝒚) = 𝟎𝟎 

 
 
 
 

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟒𝟒 + 𝟐𝟐

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐𝒅𝒅𝒚𝒚𝟐𝟐 +

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒚𝒚𝟒𝟒 +

𝒒𝒒
𝑫𝑫 = 𝟎𝟎 

 
 
 

							     
(6)

Similarly, one can integrate the equation of 
equilibrium in the Y direction:			 
			    

(7)

Considering the integration over the thick-
ness of the last equilibrium equations in the 
Z direction one obtains: 	 			 
			 

(8)

Integrating the equation of equilibrium in the 
Z direction, one obtains:

 						      (9)

where q(x,y) is a normal load distribution on 
the top face of the plate.

After replacing Equations (4), (7) and (8) in 
Eq. (9) one obtains the nonhomogeneous bi-
harmonic equation of Sophie-Germaine for 
a plate with constant thickness:

 (10)

Equation (10) is also known as equation of mo-
tion or Euler-Lagrange equation and is usually 
written as: 		

				     (11)

where s4 is the biharmonic operator (s2 – La-
placian operator).

When the displacement function w(x,y) is 
known, the deformation form (mode shape) 
can be represented. This function can be cal-
culated after integrating the equation of mo-
tion Eq. (10) for specific boundary conditions. 
The roots of the equation will then be reso-
nant (natural) frequencies.

𝑴𝑴𝒙𝒙 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐1 ; 

𝑴𝑴𝒚𝒚 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐1 ; 

𝑴𝑴𝒙𝒙𝒙𝒙 = −𝑫𝑫(𝟏𝟏 − 𝝊𝝊)
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 = 𝟎𝟎. 

 
 
 
 
 

𝑸𝑸𝒙𝒙 =
𝒅𝒅𝑴𝑴𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝑸𝑸𝒚𝒚 =
𝒅𝒅𝑴𝑴𝒚𝒚

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒚𝒚𝒚𝒚
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒛𝒛𝒛𝒛
𝒅𝒅𝒅𝒅 = 𝟎𝟎, 

 
 
 
 

𝒅𝒅𝑸𝑸𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑸𝑸𝒚𝒚

𝒅𝒅𝒅𝒅 + 𝒒𝒒(𝒙𝒙, 𝒚𝒚) = 𝟎𝟎 

 
 
 
 

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟒𝟒 + 𝟐𝟐

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐𝒅𝒅𝒚𝒚𝟐𝟐 +

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒚𝒚𝟒𝟒 +

𝒒𝒒
𝑫𝑫 = 𝟎𝟎 

 
 
 

𝑴𝑴𝒙𝒙 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐1 ; 

𝑴𝑴𝒚𝒚 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐1 ; 

𝑴𝑴𝒙𝒙𝒙𝒙 = −𝑫𝑫(𝟏𝟏 − 𝝊𝝊)
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 = 𝟎𝟎. 

 
 
 
 
 

𝑸𝑸𝒙𝒙 =
𝒅𝒅𝑴𝑴𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝑸𝑸𝒚𝒚 =
𝒅𝒅𝑴𝑴𝒚𝒚

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒚𝒚𝒚𝒚
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒛𝒛𝒛𝒛
𝒅𝒅𝒅𝒅 = 𝟎𝟎, 

 
 
 
 

𝒅𝒅𝑸𝑸𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑸𝑸𝒚𝒚

𝒅𝒅𝒅𝒅 + 𝒒𝒒(𝒙𝒙, 𝒚𝒚) = 𝟎𝟎 

 
 
 
 

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟒𝟒 + 𝟐𝟐

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐𝒅𝒅𝒚𝒚𝟐𝟐 +

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒚𝒚𝟒𝟒 +

𝒒𝒒
𝑫𝑫 = 𝟎𝟎 

 
 
 

𝑴𝑴𝒙𝒙 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐1 ; 

𝑴𝑴𝒚𝒚 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐1 ; 

𝑴𝑴𝒙𝒙𝒙𝒙 = −𝑫𝑫(𝟏𝟏 − 𝝊𝝊)
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 = 𝟎𝟎. 

 
 
 
 
 

𝑸𝑸𝒙𝒙 =
𝒅𝒅𝑴𝑴𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝑸𝑸𝒚𝒚 =
𝒅𝒅𝑴𝑴𝒚𝒚

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒚𝒚𝒚𝒚
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒛𝒛𝒛𝒛
𝒅𝒅𝒅𝒅 = 𝟎𝟎, 

 
 
 
 

𝒅𝒅𝑸𝑸𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑸𝑸𝒚𝒚

𝒅𝒅𝒅𝒅 + 𝒒𝒒(𝒙𝒙, 𝒚𝒚) = 𝟎𝟎 

 
 
 
 

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟒𝟒 + 𝟐𝟐

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐𝒅𝒅𝒚𝒚𝟐𝟐 +

𝒅𝒅𝟒𝟒𝒘𝒘
𝒅𝒅𝒚𝒚𝟒𝟒 +

𝒒𝒒
𝑫𝑫 = 𝟎𝟎 

 
 
 

𝑴𝑴𝒙𝒙 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐1 ; 

𝑴𝑴𝒚𝒚 = −𝑫𝑫.
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒚𝒚𝟐𝟐 + 𝝊𝝊

𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒙𝒙𝟐𝟐1 ; 

𝑴𝑴𝒙𝒙𝒙𝒙 = −𝑫𝑫(𝟏𝟏 − 𝝊𝝊)
𝒅𝒅𝟐𝟐𝒘𝒘
𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 = 𝟎𝟎. 

 
 
 
 
 

𝑸𝑸𝒙𝒙 =
𝒅𝒅𝑴𝑴𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝑸𝑸𝒚𝒚 =
𝒅𝒅𝑴𝑴𝒚𝒚

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑴𝑴𝒙𝒙𝒙𝒙

𝒅𝒅𝒅𝒅  

 
 
 
 

𝒅𝒅𝝈𝝈𝒙𝒙𝒙𝒙
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒚𝒚𝒚𝒚
𝒅𝒅𝒅𝒅 +

𝒅𝒅𝝈𝝈𝒛𝒛𝒛𝒛
𝒅𝒅𝒅𝒅 = 𝟎𝟎, 

 
 
 
 

𝒅𝒅𝑸𝑸𝒙𝒙

𝒅𝒅𝒅𝒅 +
𝒅𝒅𝑸𝑸𝒚𝒚

𝒅𝒅𝒅𝒅 + 𝒒𝒒(𝒙𝒙, 𝒚𝒚) = 𝟎𝟎 
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The current article deals with a ribbon loud-
speaker whose plate edges are fixed–free–
fixed–free, as illustrated in Fig. 2.

Fig. 2: The boundary conditions of the plate edges

The boundary conditions for calculating the 
displacement function after integrating the 
equation of motion for the case at hand (Fig. 
2) are [7]:

					      (12)

 

Then, the bending moment My and the shear 
force Qy on the Y axis are:

 	

	 (13)

Considering the given boundary conditions, 
and if one replaces  w(x,y,t)=W(x,y)ejωt in Eq. 
(10), the biharmonic equation of a plate with 
constant thickness will be [14]:	 		
	

	 (14)

where ω is angular frequency; 

ρ – density of the material.

Due to a certain degree of difficulty when 
solving differential equations of that order, 
approximate methods for calculating the res-
onant frequencies and representing the mode 
shape are used.
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2. 2.	 The Rayleigh Method for plates

In the Rayleigh Method, the displacement 
function is represented by two equations – 
for strain energy and kinetic energy. With this 
method, only the upper limit of the fundamen-
tal frequency for the first mode can be calcu-
lated.

The total kinetic energy of a freely vibrating 
plate with natural frequency ω=ω1 is [7]:

 					     (15)

A solution of the form is assumed as w(x-
,y,t)=W(x,y)ejωt and thus Eq. (15) can be rewrit-
ten:

 					     (16)

Eq. (16) will have maximum value when 
sin 2ω 1t=1.

The maximum total strain energy Vmax of the 
plate is [7]:

					     (17)

For a conservative system by Rayleigh’s prin-
ciple [15] one can equalize the maximum ki-
netic energy Eq. (16) and maximum strain 
energy Eq. (17) of the system and extract the 
natural frequency ω=ω1 , so:

 

				    (18)

where: , are Rayleigh’s Quotient and give the 
fundamental natural frequency of the plate.

The Rayleigh method’s accuracy can be im-
proved using the Rayleigh–Ritz method or 
other more sophisticated methods to calcu-
late all resonant frequencies.
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3.	 EXPERIMENTAL SETUP AND RESULTS

Matlab® and COMSOL Multiphysics were used 
to calculate the resonant frequencies and to 
simulate the corresponding mode shapes on 
the surface of the plate. Both software prod-
ucts use Basic Plate Theory for the calcula-
tions.

Frequency generator, Power Amplifier, Rib-
bon Loudspeaker-VLD 40, DAQ System, Digi-
tal Multimeter and a High-speed Camera (60 
fps) are used for video recording of the modes 
(the experimental setup is shown in Fig. 3).

Fig. 3: Experimental setup diagram

The properties of the loudspeaker’s plate are 
given in Tab. 1.

Young’s Modulus, GPa 70

Poisson’s Ratio 0.33

Mass Density, kg/m3 2700

Thickness, mm 0.014

Width, mm 8.6

Length, mm 56

Material Aluminum

Tab. 1: Plate Properties

For better understanding and accuracy of 
the comparative analysis the author demon-
strates one more method for calculating the 
first natural frequency - the Rayleigh Method. 
(A Matlab® based software program is used 
[16]). The calculations point that the natural 
frequency of a plate in the case study is 24 Hz.

In Tab. 2 resonant frequencies and corre-
sponding distortion, the resonant frequen-
cies and their corresponding mode shapes 
are represented. Those are calculated using 
Matlab® and COMSOL Multiphysics products 
which uses FEM to implement the Basic Plate 
Theory. 

The video recording, where some of the cal-
culated modes are visible, is available in [17]. 
A careful review of the video recording reveals 
detectable distortions in the plate.

The most pronounced deformation is ob-
served in the first mode at 24 Hz. Additionally, 
higher order modes such as the 7th mode at 
312 Hz are also discernible.

Theoretical analysis, as depicted in Tab. 2, re-
veals that as the frequency rises, the defor-
mations of the surface of the plate become 
more complex. 

The complex combination of shear forces, 
bending and twisting moments and the fixed 
position of the short edges of the plate lead to 
various deformations on its surface.

4.	 CONCLUSION

The results represented in Tab. 2 and the 
calculated fundamental frequency by the 
Rayleigh Method [16] confirm the basic theo-
ry. The eigenfrequency (the frequency of the 
first mode) obtained through the Rayleigh 
Method is higher than the fundamental fre-
quency obtained through Basic Plate Theory. 
Therefor, may affect the integrity of the plate 
(loudspeaker’s strip).

The Matlab® program [16] utilizing the 
Rayleigh method provides only the first mode, 
characterized by the highest amplitude, but 
its accuracy is not particularly emphasized. 
Conversely, Basic Plate Theory offers higher 
accuracy and computes different eigenfre-
quencies.

The negligible disparities in frequency calcu-
lations between Matlab® and COMSOL Multi-
physics result from the different quantities of 
finite elements employed (6656 for COMSOL 
Multiphysics and 576 for Matlab®).
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As observed in video record [17], there ex-
ists a considerable plate displacement (first 
mode) at a 24 Hz frequency. This finding 
supports the outcome derived from numeri-
cal analysis of the first mode using both the 
Rayleigh Method and Basic Plate Theory. Yet, 
due to limitations in the recording equipment, 
most of the higher modes remain indistinct.

The simulations, mode shape analysis, and 
experimental observations captured in the 
video recording enhance theoretical under-
standing. The findings of this research hold 
relevance in the realm of designing and man-
ufacturing ribbon loudspeakers.

№ Freq., Hz Matlab (3D) Matlab (2D) COMSOL (3D) COMSOL (2D)

1
Matlab – 23.38

COMSOL – 23.87

2
Matlab – 64.51

COMSOL – 65.77

3
Matlab – 96.86

COMSOL – 98.90

4
Matlab – 126.60

COMSOL – 129.17

5
Matlab – 197.70

COMSOL – 201.93

6
Matlab – 210.10

COMSOL – 214.13

7
Matlab – 306.00

COMSOL – 312.86

8
Matlab – 314.80

COMSOL – 320.88

Tab. 2: Calculated resonant frequencies and corresponding distortion
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