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Abstract: This paper presents a case study focusing on the vibrations of a ribbon loudspeak-
er's strip. These vibrations induce surface deformation, resulting in a degradation of the repro-
duced sound quality. The phenomenon is briefly reviewed, and the theoretical foundations are
outlined. Several modes of the loudspeaker’s strip are analyzed using 3D and 2D simulations
conducted in Matlab® and COMSOL Multiphysics. A video recording has been done that visu-
ally demonstrates the specific modes that were theoretically calculated. Conclusions drawn
from the mode analysis are applicable to the design and manufacturing of loudspeakers.
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1. INTRODUCTION

Unlike loudspeakers with acircular piston
[1-4], those with a rectangular strip are more
prone to breaking when its surface is de-
formed under the influence of its eigenfre-
quencies.

This paper focuses on the mechanical vibra-
tions of a rectangular strip of the loudspeak-
er. These vibrations result in deformations, or
modes, on the strip’'s surface, impacting the
quality of reproduced sound and potentially
posing a risk of its destruction.

Understanding the critical points (certain
modes) that may compromise the structur-
al integrity of loudspeakers with rectangular
strip is essential. This knowledge enables the
implementation of quality control measures
(active filters) or other protective strategies
to maintain the performance and durability of
these loudspeakers.

A brief review and the comprehensive theo-
retical basis for this phenomenon have been
presented at the beginning of the paper. Fur-
ther, several modes of the strip of a specific
loudspeaker have been simulated, analyzed
and visualized in 2D and 3D using Matlab® and

COMSOL Multiphysics software programs. To
do so, the Finite Elements Method (FEM) has
been used, similar to [5].

Finally, an experiment has been conducted
— video recording (at 60 fps) of some of the
strip’s modes.

2. THEORETICAL BACKGROUND

2.1. The Basic Plate Theory

The acoustic mass and impedance of the rib-
bon loudspeaker depend on the reproduced
frequency [6]. This results in resonances at
different frequencies for a given ribbon loud-
speaker. Those resonant frequencies are in
relation to the strip’s thickness.

Theoretically, the behavior of the ribbon loud-
speaker’s strip may be compared to that of
avery thin (afew microns) plate. Aplate is
a solid body bounded by two parallel flat sur-
faces, having two dimensions far greater than
the third [7, 8]. When the ratio of the plate
thickness to its smaller lateral dimension (in
this case, the width) is less than 1/20, the plate
is usually considered to be thin [9].
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There are two main mathematical methods for
plate modes examination. The first method, as
proposed by Poisson, involves the development
of a series of functions representing stress and
strain along the Z coordinate (Fig. 1), a concept
originally established by Cauchy. The second
is based on Kirchhoff's General Theory of thin
rods or wires represented by Love, generalized
for different plate thickness by Midlin (and now
known as Midlin Plate Theory).

These two approaches consider deformations
of the plates whose edges are either clamped
or simply supported, while more sophisticat-
ed methods like the Rayleigh-Ritz method,
Finite Strip method, Two-new eigenfunction
theory, to name afew, examine plates with
all possible combinations of clamped, simply
supported, and free edge conditions [10, 11].

There are also other approaches for analyz-
ing thin plate vibrations, like the Bessel func-
tion method, where various Bessel functions
represent the different mechanical vibrations
(modes) with different boundary conditions
[12]. The first of the strip’'s modes has the
highest amplitude, while the actual defor-
mations of the other modes are significantly
smaller [9].

Therefore, the deformation of the strip in the
first eigenfrequency (first mode) will be of
most significant research interest in terms
of both — the mechanical bending of the strip
and the degree of deterioration of the repro-
duced sound.

In the current paper, the Rayleigh Method has
been used to determine the first eigenfre-
guency of the ribbon loudspeaker. The ob-
tained result has been compared to results
from simulations conducted by software
products using the Basic Plates Theory for
calculating the resonant frequencies. It also
has been compared to the 60-fps video re-
cording of the plate mechanical vibrations.

In Basic Plates Theory, some intensities
and moments pertain to a unit length of the
cross-section [13, 14]. Those are:

—shear forces — @ and Qy'

—bending moments —M and Qy;

— twisting moments — MXy = Myx.

In Fig. 1, the latter are shown, including tan-
gential stresses (o, 0, .0, 0,0, and 0,,)on
the surface of the pIa{e.

The numerical values of the intensities and
moments on the plate surface are [13, 141

h h
2 2
Q, = n 0x,dz,Qy = N 0y,dz;
2 2
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M, = fhzaydz,My = fhzaxdz; 0
2 2

h

2
Mxy = Myx = fhzaxydz,

2

where h is the plate thickness.

Fig. 1: Shear forces, bending and twisting mo-
ments and tangential stresses

Due to the plane-strained state of the plate,
the tangential stresses o,, 0, and o, will
be considerably smaller than o, o, and Oy
therefore they are neglected. The tangential
stresses are known from Hook's law for the
two-dimensional strained state [14]:

E
Ox = T2 (&c + vgy);
E
Oy =1 _02 (sy +vg,); (2)
E

T = 2@ +0) ™
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where v is Poisson’s ratio, characterizing the
elastic properties of the material;

E—Young's modulus.

In EqQ. (2) ¢, €, and ¢,  are the correlations be-
tween the mdévements and the deformations.
Those strain-displacement relations that re-
sult in the elastic body being strained due to
the applied load are well known from Cau-
chy’s work:

du

dx
dv

y = dy ;
du dv
dy dx’

Ex =

&

Exy =

where uand vrepresent the horizontal move-
ments, subsequently on the X and Y axis, of
that point on the plate’s surface.

After applying EqQ. (3) in Eq. (2) and then Eq.
(2) in Eq. (1) and afterward integrating to the
plate’s thickness (on 2) one obtains:

M, D dw + d'w ;
B dxz Y dy? )’
d*w d*w
My=—D<F+de2> 4)
d*w

My =-D(1-v) o

where w(x,y)is a displacement function;
B Eh3
T 12(1 —v?)
rigidity of the plate material).

—plate stiffness (flexural

The internal forces and moments can be re-
lated when considering equilibrium of the
plate elements. Thus, for equilibrium in the X
direction, in the absence of body forces [71:

do, N do,, do,,
dx dy dz

After multiplying Eq. (5) by zand integrating
over the thickness of the plate one can as-
sume that:

=0.

(5)

dMm, dM,,

* = Tdx dy

Similarly, one can integrate the equation of
equilibrium in the Ydirection:

dM, dM,,

YT dy T dx

Considering the integration over the thick-
ness of the last equilibrium equations in the
Z direction one obtains:

(6)

(7)

do,,
dx

do,,
dz

do,,
dy

Integrating the equation of equilibrium in the
Z direction, one obtains:

=0, 8)

d
&+&+q(x,y) =0

=D (9)

where qg(x,y) is anormal load distribution on
the top face of the plate.

After replacing Equations (4), (7) and (8) in
Eq. (9) one obtains the nonhomogeneous bi-
harmonic equation of Sophie-Germaine for
a plate with constant thickness:

d*w d*w

d‘*w
7 t253 !
dx dx2dy?

dy +D

0 (10

Equation (10) is also known as equation of mo-
tion or Euler-Lagrange equation and is usually
written as:

q

4y — =

where V*is the biharmonic operator (V?—La-
placianoperator).

When the displacement function w(x\y) is
known, the deformation form (mode shape)
can be represented. This function can be cal-
culated after integrating the equation of mo-
tion Eq. (10) for specific boundary conditions.
The roots of the equation will then be reso-
nant (natural) frequencies.
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The current article deals with aribbon loud-
speaker whose plate edges are fixed—free—
fixed—free, as illustrated in Fig. 2.

Free

Fig. 2: The boundary conditions of the plate edges

The boundary conditions for calculating the
displacement function after integrating the
equation of motion for the case at hand (Fig.
2) are [7]:

w(=b/2,y) =0
w(+b/2,y) = 0;

dw (12)
o 0,for (£b/2,y).

Then, the bending moment M and the shear
force Qy on the Yaxis are:

d*w d*w

My= D( +UW

dy? ) =0; for (x,ta/2)

sy 03
_Di[72w]__Di d_+d_w =0
Q= dy  Tdy||dx? " dy? o

Considering the given boundary conditions,
and if one replaces w(xyt)=W(x,y)e“t in Eq.
(10), the biharmonic equation of a plate with
constant thickness will be [14]:

d*w ok W
dy* P p

d‘w N
dx?dy?

d'w +2
dx*

where @ is angular frequency;
p — density of the material.

Due to acertain degree of difficulty when
solving differential equations of that order,
approximate methods for calculating the res-
onant frequencies and representing the mode
shape are used.

2.2. The Rayleigh Method for plates

In the Rayleigh Method, the displacement
function is represented by two equations —
for strain energy and kinetic energy. With this
method, only the upper limit of the fundamen-
tal frequency for the first mode can be calcu-
lated.

The total kinetic energy of afreely vibrating
plate with natural frequency w=w, is [71:

L[ [ ol e
=3 _g _%p w(x,y, xay. (15)

A solution of the form is assumed as w(x-
Y)=W(xy)e“tand thus Eq. (15) can be rewrit-
ten:

wz 2 (2
B TJ.bfaphW%(xly)dxdy_ (16)

Eqg. (16) will have maximum value when
sine t=1.
The maximum total strain energy V__ of the
plate is [7]:
D (2 (2
Vifbfa(vzwl)zdxdy
2 _f max
b/2f 21 ) d2W1> d4W1 dxd
— v X .
b/2 —a/2 d xdy dx*dy? Y

For a conservative system by Rayleigh's prin-
ciple [15] one can equalize the maximum Ki-
netic energy Eqg. (16) and maximum strain
energy Eq. (17) of the system and extract the
natural frequency w=w,, so:

L DI L LW + 21 - 0){Wh o, — Wi oWy ), )| dxdy
w] = p :
hfbb//zzf ;/ZZ w%dxdy (18)
where: , are Rayleigh's Quotient and give the

fundamental natural frequency of the plate.

The Rayleigh method’s accuracy can be im-
proved using the Rayleigh—Ritz method or
other more sophisticated methods to calcu-
late all resonant frequencies.
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3. EXPERIMENTAL SETUP AND RESULTS

Matlab® and COMSOL Multiphysics were used
to calculate the resonant frequencies and to
simulate the corresponding mode shapes on
the surface of the plate. Both software prod-
ucts use Basic Plate Theory for the calcula-
tions.

Frequency generator, Power Amplifier, Rib-
bon Loudspeaker-VLD 40, DAQ System, Digi-
tal Multimeter and a High-speed Camera (60
fps) are used for video recording of the modes
(the experimental setup is shown in Fig. 3).

DAQ, System
l Frequenc
PO“‘fe‘r Generato
amplifier

Digital
Multimeter

’—‘Loudspeaker

Fig. 3: Experimental setup diagram

Camera

The properties of the loudspeaker’s plate are
givenin Tab. 1.

Young's Modulus, GPa 70
Poisson’'s Ratio 0.33
Mass Density, kg/m? 2700
Thickness, mm 0.014
Width, mm 8.6
Length, mm 56
Material Aluminum

Tab. I: Plate Properties

For better understanding and accuracy of
the comparative analysis the author demon-
strates one more method for calculating the
first natural frequency - the Rayleigh Method.
(A Matlab® based software program is used
[16]). The calculations point that the natural
frequency of a plate in the case study is 24 Hz.

In Tab. 2 resonant frequencies and corre-
sponding distortion, the resonant frequen-
cies and their corresponding mode shapes
are represented. Those are calculated using
Matlab® and COMSOL Multiphysics products
which uses FEM to implement the Basic Plate
Theory.

The video recording, where some of the cal-
culated modes are visible, is available in [17].
A careful review of the video recording reveals
detectable distortions in the plate.

The most pronounced deformation is ob-
served in the first mode at 24 Hz. Additionally,
higher order modes such as the 7th mode at
312 Hz are also discernible.

Theoretical analysis, as depicted in Tab. 2, re-
veals that as the frequency rises, the defor-
mations of the surface of the plate become
more complex.

The complex combination of shear forces,
bending and twisting moments and the fixed
position of the short edges of the plate lead to
various deformations on its surface.

4. CONCLUSION

The results represented in Tab. 2 and the
calculated fundamental frequency by the
Rayleigh Method [16] confirm the basic theo-
ry. The eigenfrequency (the frequency of the
first mode) obtained through the Rayleigh
Method is higher than the fundamental fre-
guency obtained through Basic Plate Theory.
Therefor, may affect the integrity of the plate
(loudspeaker’s strip).

The Matlab® program [16] utilizing the
Rayleigh method provides only the first mode,
characterized by the highest amplitude, but
its accuracy is not particularly emphasized.
Conversely, Basic Plate Theory offers higher
accuracy and computes different eigenfre-
quencies.

The negligible disparities in frequency calcu-
lations between Matlab® and COMSOL Multi-
physics result from the different quantities of
finite elements employed (6656 for COMSOL
Multiphysics and 576 for Matlab®).
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As observed in video record [17], there ex-
ists a considerable plate displacement (first
mode) at a?24 Hz frequency. This finding
supports the outcome derived from numeri-
cal analysis of the first mode using both the
Rayleigh Method and Basic Plate Theory. Yet,
due to limitations in the recording equipment,
most of the higher modes remain indistinct.

The simulations, mode shape analysis, and
experimental observations captured in the
video recording enhance theoretical under-
standing. The findings of this research hold
relevance in the realm of designing and man-
ufacturing ribbon loudspeakers.

Ne Freq., Hz Matlab (3D) Matlab (2D) COMSOL (3D) COMSOL (2D)

Matlab —23.38 -

1 : 3 : (2 B |
COMSOL — 23.87 s =
Matlab —64.51 \ '

2 v '
COMSOL — 65.77
Matlab — 96.86 >

3 i T
COMSOL — 98.90 v
Matlab — 126.60

. N EEE
COMSOL — 12917 N
Matlab —197.70 A ot

5 - 9 .
COMSOL —201.93 "
Matlab — 21010 \\

6 | 10 0
COMSOL — 21413 \"
Matlab — 306.00 A D ; A
COMSOL — 312.86 ' : |
Matlab — 314.80 w &

8 LY W 101
COMSOL —320.88

Tab. 2: Calculated resonant frequencies and corresponding distortion
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